Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Mol Sci ; 23(5)2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1715408

ABSTRACT

COVID-19, resulting from the SARS-CoV-2 virus, is a major pandemic that the world is fighting. SARS-CoV-2 primarily causes lung infection by attaching to the ACE2 receptor on the alveolar epithelial cells. However, the ACE2 receptor is also present in intestinal epithelial cells, suggesting a link between nutrition, virulence and clinical outcomes of COVID-19. Respiratory viral infections perturb the gut microbiota. The gut microbiota is shaped by our diet; therefore, a healthy gut is important for optimal metabolism, immunology and protection of the host. Malnutrition causes diverse changes in the immune system by repressing immune responses and enhancing viral vulnerability. Thus, improving gut health with a high-quality, nutrient-filled diet will improve immunity against infections and diseases. This review emphasizes the significance of dietary choices and its subsequent effects on the immune system, which may potentially impact SARS-CoV-2 vulnerability.


Subject(s)
COVID-19/immunology , Feeding Behavior , Immune System/immunology , Malnutrition/immunology , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/virology , Gastrointestinal Microbiome/immunology , Health Status , Humans , Models, Immunological , Nutritional Status , Pandemics , SARS-CoV-2/pathogenicity , Virulence/immunology
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1481965

ABSTRACT

Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.


Subject(s)
Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , RNA, Viral/administration & dosage , Replicon , Viral Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Defective Viruses/genetics , Defective Viruses/immunology , Female , Gene Deletion , Genes, env , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/pathogenicity , RNA, Viral/genetics , RNA, Viral/immunology , Vaccines, DNA , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence/genetics , Virulence/immunology
3.
Nat Commun ; 12(1): 2790, 2021 05 13.
Article in English | MEDLINE | ID: covidwho-1387341

ABSTRACT

SARS-CoV-2 is of zoonotic origin and contains a PRRA polybasic cleavage motif which is considered critical for efficient infection and transmission in humans. We previously reported on a panel of attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction of the spike protein. Here, we characterize pathogenicity, immunogenicity, and protective ability of a further cell-adapted SARS-CoV-2 variant, Ca-DelMut, in in vitro and in vivo systems. Ca-DelMut replicates more efficiently than wild type or parental virus in Vero E6 cells, but causes no apparent disease in hamsters, despite replicating in respiratory tissues. Unlike wild type virus, Ca-DelMut causes no obvious pathological changes and does not induce elevation of proinflammatory cytokines, but still triggers a strong neutralizing antibody and T cell response in hamsters and mice. Ca-DelMut immunized hamsters challenged with wild type SARS-CoV-2 are fully protected, with little sign of virus replication in the upper or lower respiratory tract, demonstrating sterilizing immunity.


Subject(s)
COVID-19/diagnosis , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Replication/genetics , Animals , COVID-19/immunology , COVID-19/virology , Cell Line, Tumor , Chlorocebus aethiops , Cricetinae , Cytokines/immunology , Cytokines/metabolism , Female , Host-Pathogen Interactions , Humans , Male , Mesocricetus , Mice, Inbred BALB C , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vero Cells , Virulence/genetics , Virulence/immunology
4.
Front Biosci (Landmark Ed) ; 26(5): 51-75, 2021 04 30.
Article in English | MEDLINE | ID: covidwho-1241385

ABSTRACT

In 2020, a novel strain of coronavirus (COVID-19) has led to a significant morbidity and mortality worldwide. As of the date of this writing, a total of 116 M cases has been diagnosed worldwide leading to 2.5 M deaths. The number of mortalities is directly correlated with the rise of innate immune cells (especially macrophages) in the lungs that secrete inflammatory cytokines (IL-1ß and IL-6) leading to the development of "Cytokine Storm Syndrome" (CSS), multi-organ-failure and death. Given that currently the treatment of this condition is rare and release of effective vaccine might be months away, here, we review the plants and their pharmacologically active-compounds as potential phytopharmaceuticals for the virus induced inflammatory response. Experimental validation of the effectiveness of these natural compounds to prevent or reduce the cytokine storm might be beneficial as an adjunct treatment of SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome/prevention & control , Phytotherapy/methods , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry , SARS-CoV-2/drug effects , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokines/immunology , Cytokines/metabolism , Humans , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Plants, Medicinal/classification , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Virulence/drug effects , Virulence/immunology
5.
Front Immunol ; 11: 552909, 2020.
Article in English | MEDLINE | ID: covidwho-803900

ABSTRACT

The 2019 novel coronavirus (SARS-CoV-2) pandemic has caused a global health emergency. The outbreak of this virus has raised a number of questions: What is SARS-CoV-2? How transmissible is SARS-CoV-2? How severely affected are patients infected with SARS-CoV-2? What are the risk factors for viral infection? What are the differences between this novel coronavirus and other coronaviruses? To answer these questions, we performed a comparative study of four pathogenic viruses that primarily attack the respiratory system and may cause death, namely, SARS-CoV-2, severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and influenza A viruses (H1N1 and H3N2 strains). This comparative study provides a critical evaluation of the origin, genomic features, transmission, and pathogenicity of these viruses. Because the coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 is ongoing, this evaluation may inform public health administrators and medical experts to aid in curbing the pandemic's progression.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/epidemiology , Middle East Respiratory Syndrome Coronavirus/genetics , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Severe acute respiratory syndrome-related coronavirus/genetics , Animals , Betacoronavirus/pathogenicity , Birds/virology , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Genome, Viral , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza, Human/transmission , Influenza, Human/virology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Virulence/immunology
6.
Hum Vaccin Immunother ; 16(12): 3055-3060, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-730557

ABSTRACT

Coronavirus disease-2019 (COVID-19) pandemic has become a global threat and death tolls are increasing worldwide. The SARS-CoV-2 though shares similarities with SARS-CoV and MERS-CoV, immunopathology of the novel virus is not understood properly. Previous reports from SARS and MERS-CoV documents that preexisting, non-neutralizing or poorly neutralizing antibodies developed as a result of vaccine or infection enhance subsequent infection, a phenomenon called as antibody-dependent enhancement (ADE). Since immunotherapy has been implicated for COVID-19 treatment and vaccine is under development, due consideration has to be provided on ADE to prevent untoward reactions. ADE mitigation strategies like the development of vaccine or immunotherapeutics targeting receptor binding motif can be designed to minimize ADE of SARS-CoV-2 since full-length protein-based approach can lead to ADE as reported in MERS-CoV. The present mini-review aims to address the phenomenon of ADE of SARS-CoV-2 through the lessons learned from SARS-CoV and MERS-CoV and ways to mitigate them so as to develop better vaccines and immunotherapeutics against SARS-CoV-2.


Subject(s)
Antibody-Dependent Enhancement/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Drug Development/trends , Immunotherapy/trends , SARS-CoV-2/immunology , Animals , Antibody-Dependent Enhancement/drug effects , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Drug Development/methods , Humans , Immunotherapy/methods , SARS-CoV-2/pathogenicity , Virulence/drug effects , Virulence/immunology , COVID-19 Drug Treatment
7.
Immunobiology ; 225(6): 152008, 2020 11.
Article in English | MEDLINE | ID: covidwho-723428

ABSTRACT

The current coronavirus pandemic, COVID-19, is the third outbreak of disease caused by the coronavirus family, after Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome. It is an acute infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This severe disease is characterised by acute respiratory distress syndrome, septic shock, metabolic acidosis, coagulation dysfunction, and multiple organ dysfunction syndromes. Currently, no drugs or vaccines exist against the disease and the only course of treatment is symptom management involving mechanical ventilation, immune suppressants, and repurposed drugs. The severe form of the disease has a relatively high mortality rate. The last six months have seen an explosion of information related to the host receptors, virus transmission, virus structure-function relationships, pathophysiology, co-morbidities, immune response, treatment and the most promising vaccines. This review takes a critically comprehensive look at various aspects of the host-pathogen interaction in COVID-19. We examine the genomic aspects of SARS-CoV-2, modulation of innate and adaptive immunity, complement-triggered microangiopathy, and host transmission modalities. We also examine its pathophysiological impact during pregnancy, in addition to emphasizing various gaps in our knowledge. The lessons learnt from various clinical trials involving repurposed drugs have been summarised. We also highlight the rationale and likely success of the most promising vaccine candidates.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Immunity, Innate/immunology , SARS-CoV-2/immunology , Virus Replication/immunology , COVID-19/prevention & control , COVID-19/virology , Host-Pathogen Interactions/immunology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Vaccination , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Virulence/genetics , Virulence/immunology , Virus Replication/genetics
8.
Rev Med Virol ; 30(6): 1-9, 2020 11.
Article in English | MEDLINE | ID: covidwho-690292

ABSTRACT

SARS-CoV-2 virus, a member of the Coronaviridae family, causes Covid-19 pandemic disease with severe respiratory illness. Multiple strategies enable SARS-CoV-2 to eventually overcome antiviral innate immune mechanisms which are important components of viral pathogenesis. This review considers several mechanisms of SARS-CoV-2 innate immune evasion including suppression of IFN-α/ß production at the earliest stage of infection, mechanisms that exhaust natural killer cell-mediated cytotoxicity, overstimulation of NLRP3 inflammasome and induction of a cytokine storm. A comparison with SARS-CoV is made. Greater knowledge of these and other immune evasion tactics may provide us with improved possibilities for research into this novel deadly virus.


Subject(s)
COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Immune Evasion , Immunity, Innate , SARS-CoV-2/immunology , Biomarkers , COVID-19/metabolism , Coronavirus/immunology , Coronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Disease Susceptibility , Humans , SARS-CoV-2/pathogenicity , Species Specificity , Virulence/immunology , Virulence Factors/immunology
SELECTION OF CITATIONS
SEARCH DETAIL